Phomoxanthones A and B, Novel Xanthone Dimers from the Endophytic Fungus *Phomopsis* Species

Masahiko Isaka,* Amonlaya Jaturapat, Kamolchanok Rukseree, Kannawat Danwisetkanjana, Morakot Tanticharoen, and Yodhathai Thebtaranonth

National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Rama 6 Road, Bangkok 10400, Thailand

Received January 12, 2001

Phomoxanthones A (1) and B (2), two novel xanthone dimers, were isolated from the endophytic fungus *Phomopsis* sp. BCC 1323. Structures of 1 and 2 were elucidated by spectroscopic methods. These compounds exhibited significant in vitro antimalarial and antitubercular activities and cytotoxicity.

The genus *Phomopsis* has been known to be a rich source of bioactive secondary metabolites of diverse structures, including, for example, phomopsichalasin¹ and several other cytochalasins² from a *Phomopsis* spp., phomopsin A (a hexapeptide mycotoxin)³ from *P. leptostromiformis*, convolvulanic acids and other phytotoxic isobenzofuranones⁴ from *P. convolvulus*, and oblongolide and phomopsolides (phytotoxic sesquiterpene γ -lactones)^{5,6} from *P. oblogna*.

In an ongoing effort to search for bioactive fungal metabolites, we discovered antimalarial activity in the extract from the fungus *Phomopsis* sp. BCC 1323, a teak endophyte collected from northern Thailand and deposited at the BIOTEC Culture Collection. Due to our interest in the biological activity as well as the diverse metabolite production of this genus, an investigation of the chemical constituents of this strain was undertaken. Activity-guided fractionation of the crude extract led to the isolation and identification of two novel xanthone dimers, **1** and **2**, which are named phomoxanthones A and B, respectively. We report herein the isolation, structure elucidation, and biological activities of these compounds.

Results and Discussion

Phomoxanthones A (1) and B (2) were isolated as yellow powders from the MeOH extract of mycelia from flask

Figure 1. Selected HMBC correlations for 1 and 2.

cultures of Phomopsis sp. BCC 1323. Phomoxanthone A, the major metabolite, has a molecular formula of $C_{38}H_{38}O_{16}$, as established by HRMS. The presence of only 19 carbon signals in the ¹³C NMR spectrum indicated the symmetric, homodimer structure of this compound. Analyses of ¹H and ¹³C NMR, DEPTs, COSY, and HMQC spectra revealed that half of the molecule, C19H19O6, possesses one conjugated ketone carbonyl ($\delta_{\rm C}$ 187.7 ppm), two acetoxy groups, and two downfield signals for hydroxyl protons at $\delta_{\rm H}$ 11.52 and 14.09 ppm. The IR spectrum of phomonone A supported the presence of the carbonyl groups, showing strong absorptions at ν 1744 and 1615 cm⁻¹. Analysis of HMBC correlations suggested the presence of a tetrahydroxanthone unit as shown in Figure 1. Although no long-range correlation to the ketone carbonyl carbon at δ_C 187.7 ppm was observed, the formula of C₁₉H₁₉O₈ necessitated the ketone linkage of the two terminal rings to construct a tetrahydroxanthone ring. The keto-enol structure is consistent with the low-field chemical shift of the corresponding proton at $\delta_{\rm H}$ 14.09 ppm. The relative configuration at C-6, C-5, and C-10a depicted in 1 was deduced from ¹H NMR and NOESY spectral data. The ring fusion necessitates the pseudoaxial orientation of the acetoxymethyl group adjacent to C-10a. In the NOESY spectrum of phomoxanthone A, a correlation between one of the C-12 methylene protons at $\delta_{\rm H}$ 4.17 ppm and H-6 was observed. This supported the presence of an acetoxymethyl group and H-6 on the same side of the six-membered ring and the pseudoaxial orientation of H-6 in the pseudochair conformation. In the ¹H NMR spectrum, H-5 appears as a sharp singlet, which rules out the pseudoaxial orientation of H-5 (no large $J_{5.6}$ value). NOESY correlation of H-5 with both H-6 and methyl protons (H-11) supported the pseudoequatorial orientation of H-5. Thus, the acetoxy group on C-5 must occupy the pseudoaxial position, and, consequently, the methyl group on C-6 should be placed in the pseudoequatorial position. Unfortunately, detailed NMR analysis of the relationship between the three protons, H-6 and

^{*} To whom correspondence should be addressed. Tel: (662) 644-8103. Fax: (662) 644-8107. E-mail: isaka@biotec.or.th.

Figure 2. NOESY correlations of 3.

methylene protons (H-7), could not be achieved due to the close chemical shifts of these protons.

The proposed relative stereochemistry of 1 was confirmed by NMR analyses of the deacetyl derivative **3**, which was obtained by treatment of 1 with concentrated H_2SO_4 MeOH. In the ¹H NMR spectrum of **3**, the signals for H-6 and the methylene protons (H-7) do not overlap, appearing at $\delta_{\rm H}$ 2.14 as a multiplet and 2.48 (dd, J = 19.2, 11.4 Hz) and 2.35 (dd, J = 19.2, 6.1 Hz) ppm, respectively. Due to the large vicinal coupling constant of $J_{6,7} = 11.4$ Hz, the $\delta_{\rm H}$ 2.48 signal was assigned as the pseudoaxial H-7, and the $\delta_{\rm H}$ 2.35 signal ($J_{6,7}$ = 6.1 Hz) as the pseudoequatorial H-7. Thus, based on the $J_{6,7}$ -coupling, H-6 must occupy the pseudoaxial orientation. NOESY correlations between H-6 and one of the H-12 methylene signals at $\delta_{\rm H}$ 3.42 indicate that the hydroxymethyl group on C-10a and H-6 are on the same side of the six-membered ring (Figure 2). The NOESY correlation between the $\delta_{\rm H}$ 3.42 signal (H-12) and H-5 was consistent with the established relative configuration, where the hydroxymethyl group and H-5 are on the same side of the pseudochair cyclohexene ring, hence, the pseudoequatorial orientation of H-5.

The symmetry observed in the ¹H and ¹³C spectra of phomoxanthone A indicated that this molecule is a homodimer with the xanthone ring, having identical absolute configurations. Due to the fact that phomoxanthone A was isolated from the culture broth of the strain BCC 1323 as a single stereoisomer of the C-4–C-4' dimer, the absolute configuration of this compound must be either 5R,6R,-10aR,5'R,6'R,10a'R or 5S,6S,10aS,5'S,6'S,10a'S.

Phomoxanthone B (2) has the same molecular formula as phomoxanthone A, $C_{38}H_{38}O_{16}$, as determined by HRMS. However, phomoxanthone B is not symmetrical and shows 38 peaks in its ¹³C NMR spectrum. The IR and UV spectra of phomoxanthone B were similar to those of phomoxanthone A. Analyses of 1D and 2D NMR spectra, particularly HMBC, revealed that this compound is also a dimer of the same xanthone unit as in 1, but with the dimer formation between C-2 and C-4', as determined from the long-range C-H correlations of H-3 to C-4' (q) and H-3' to C-2 (q). The signal for the methyl proton of one of the acetoxy groups, on either C-12 or C-12', was shifted upfield ($\delta_{\rm H}$ 1.79 ppm, 3H, s), while the other resonates at a typical chemical shift ($\delta_{\rm H}$ 2.11). This upfield shift should be due to the shielding effect by the aromatic ring of the other half of the dimer. Thus, the $\delta_{\rm H}$ 1.79 signal was assigned to the acetoxy group on C-12', and the signal at $\delta_{\rm H}$ 2.11 to the acetoxy group on C-12. The NMR assignments of protons and carbons of phomoxanthone B were established on the basis of the connectivity network achieved by the analyses of COSY, NOESY, HMQC, and HMBC correlations (Table 1). Also, on the basis of the analysis of J values and NOESY correlations in the same manner as described for compounds 1 and 3, phomoxanthone B was proposed to possess either the 5R,6R,10aR,5'R,6'R,10a'R configuration shown as 2 or its mirror image.

The structures of phomoxanthones are related to secalonic acids, also referred to as ergochromes,^{7,8} which are

C-2-C-2' dimers of similar tetrahydroxanthones. Seven isomers of secalonic acids, A-G, with different configurations at C-5, C-6, C-10a, C-5', C-6', and C-10a', have been isolated from several fungi such as Claviceps purpurea,9 Aspergillus ochraceus,¹⁰ A. aculeatus,¹¹ Pyrenochaeta terrestris,12 and Penicillium oxalicum.13 Interestingly, secalonic acids A–D were initially reported as C-4–C-4' dimers, but later revised to the correct C-2-C-2' linkage.14,15 Secalonic acid A isomers having C-2-C-4' and C-4-C-4' linkage have previously been prepared,¹⁶ but phomoxanthones A and B are the first examples of naturally occurring C-4-C-4' and C-2-C-4' tetrahydroxanthone dimers of this emodin-derived xanthone. It should also be pointed out that the phomoxanthones bear acetoxymethyl substituents on C-10a and C-10a', while all the secalonic acids are substituted with methoxycarbonyl groups on these positions.

Phomoxanthones A (1) and B (2) exhibited significant activity against *Plasmodium falciparum* (K1, multi drugresistant strain) and against *Mycobacterium tuberculosis* (H37Ra strain), although weaker than standard drugs (Table 2). However, these compounds are also cytotoxic to two cancer cell lines (KB, BC-1) and to Vero cells. It is interesting to note that compound **3**, the deacetyl analogue of **1**, was inactive in all the assays. This may due to the low lipophilicity of **3** compared to those of **1** and **2**. The related secalonic acids are reported to exhibit various biological activities such as cytostatic activity (mouse leukemia L1210 cells),¹⁷ phlogistic activity,¹⁸ inhibition of protein kinase C and cyclic AMP-dependent protein kinase,¹⁹ and toxicity to mice.²⁰

Experimental Section

General Experimental Procedures. Melting points were measured with a Electrothermal IA9100 digital melting point apparatus and are uncorrected. Optical rotations were measured in CHCl₃ with a JASCO DIP-370 digital polarimeter. UV spectra were recorded in MeOH on a Varian CARY 1E UV-visible spectrophotometer. FT-IR spectra were taken as KBr pellets on a Perkin-Elmer system 2000 spectrometer. ESI (electron spray ionization)–TOF mass spectra were measured with a Micromass LCT mass spectrometer. ¹H NMR (400 MHz), ¹³C NMR (100 MHz), DEPTs, and 2D NMR spectra (COSY, NOESY, HMQC, and HMBC) were taken in CDCl₃ on a Bruker DRX400 spectrometer.

Fungal Material. The endophyte, *Phomopsis* sp. BCC 1323, was isolated from a teak leaf, *Tectona grandis* L., at Mee Rim district, Chaingmai Province, Northern Thailand, by Dr. Sureewan Mekkamol. The strain is deposited at the BIOTEC Culture Collection as BCC 1323.

Production and Isolation of Phomoxanthones. An isolated culture of the strain BCC 1323 was grown on potato dextrose agar (PDA) at 22 °C for 5 days, before inoculation into 20×1 L Erlenmeyer flasks each containing 250 mL of bacto-malt extract broth (MEB). The cultures were incubated at 22 °C for 20 days. The mycelia were extracted with MeOH (1 L, 2 days), and to the extract was added H₂O (100 mL). The mixture was then washed with hexane (800 mL). The aqueous MeOH solution was dried under reduced pressure, and the residual oil was dissolved in EtOAc (1 L). The EtOAc solution was washed with H₂O (500 mL) and concentrated to obtain a brown solid (0.34 g). The crude solid was passed through a Sephadex LH-20 chromatography column (3.5×25 cm) with MeOH as eluent. A yellow pigment was eluted after ca. 200 mL elution with MeOH. This process was repeated twice to yield a yellow powder (116 mg), which after triturating twice with MeOH (5 mL, room temperature, 12 h) gave a pure compound 1 (64 mg). The combined filtrate, containing a mixture of 1 and 2, was subjected to separation by repeated preparative HPLC using a reversed-phase column (NovaPak

Table 1.	¹³ C and	¹ H NMR	Data for	Compounds	1 :	and	2
----------	---------------------	--------------------	----------	-----------	-----	-----	---

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		phomoxanthone A (1)		phomoxanthone B (2)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	position	$\delta_{\rm C}$ (mult.)	$\delta_{ m H}$ (mult., J in Hz)	$\delta_{\rm C}$ (mult.)	$\delta_{ m H}$ (mult., J in Hz)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	161.6 (s)		159.8 (s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	109.5 (d)	6.58 (d, 8.8)	118.4 (s)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	141.1 (d)	7.38 (d, 8.8)	139.2 (d)	7.18 (d, 8.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	115.3 (s)		107.6 (d)	6.43 (d, 8.0)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4a	153.8 (s)		157.1 (s)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	70.3 (d)	5.40 (s)	70.2 (d)	5.53 (s)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	27.5 (d)	2.37 (m)	27.7 (d)	2.40 (m)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	33.2 (t)	2.46 (m), 2.33 (m)	33.2 (t)	2.45-2.37 (m)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	177.6 (s)		177.7 (s)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8a	100.1 (s)		100.8 (s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	187.7 (s)		188.0 (s) ^b		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9a	106.2 (s)		106.3 (s) ^c		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10a	80.3 (s)		80.5 (s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	17.5 (q)	1.01 (d, 5.8)	17.6 (q)	1.06 (d, 5.4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	64.5 (t)	4.28 (d, 12.8), 4.17 (d, 12.8)	64.4 (t)	4.55 (d, 13.2), 4.30 (d, 13.1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-O <i>C</i> (O)CH ₃	169.6 (s)		170.5 (s)		
$\begin{array}{cccccc} 12 \cdot OC(0) CH_3 & 170.0 (s) & 1.89 (s) & 20.7 (q)^d & 2.11 (s)^e \\ 10 - 0H & 11.52 (s) & 11.61 (s) \\ 8 \cdot OH & 14.09 (s) & 161.6 (s) \\ 2' & 109.9 (d) & 6.57 (d, 8.5) \\ 3' & 139.4 (d) & 7.32 (d, 8.5) \\ 4' & 117.1 (s) \\ 4a' & 5' & 69.3 (d) & 5.35 (d, 1.3) \\ 6' & 27.6 (d) & 2.28 (m) \\ 7' & 33.3 (t) & 2.45 - 2.37 (m) \\ 8' & 177.6 (s) \\ 8a' & 100.4 (s) \\ 9' & 188.1 (s)^b \\ 9a' & 106.2 (s)^c \\ 10a' & 80.2 (s) \\ 11' & 17.3 (q) & 0.99 (d, 6.3) \\ 12' - OC(0) CH_3 & 69.7 (s) \\ 5' - OC(0) CH_3 & 69.7 (s) \\ 12' - OC(0) CH_3 & 169.7 (s) \\ 12' - OC(0) CH_3 & 169.8 (s) \\ 12' - OC(0) CH_3 & 20.2 (q) & 1.79 (s) \\ 12' - OC(0) CH_3 & 20.2 (q) & 1.38 (s) \\ 12' - OC(0) CH_3 & 20.2 (q) & 1.79 (s) \\ 12' - OC(0) CH_3 & 20.2 (q) & 1.38 (s) \\ 13' - 0H & 14.00 (s) \\ 13' - 0H & 14.00 (s) \\ 13' - 0H & 14.00 (s) \\ 14.01 (s) \\ 11.38 (s) \\ 8' - 0H & 14.01 (s) \\ 14.01 (s) \\ 11.38 (s) \\ 12' - 0H & 14.01 (s) \\ 11.01 $	$5-OC(0)CH_3$	20.6 (q)	2.07 (s)	20.9 (q) ^d	2.10 (s) e	
12-OC(0)CH3 20.4 (q) 1.89 (s) 20.7 (q) ^d 2.11 (s) ^e 1-OH 11.52 (s) 11.61 (s) 14.08 (s) 8-OH 14.09 (s) 161.6 (s) 14.08 (s) 1' 161.6 (s) 14.08 (s) 14.08 (s) 2' 109.9 (d) 6.57 (d, 8.5) 3' 3' 139.4 (d) 7.32 (d, 8.5) 13' 4' 117.1 (s) 17.4 (s) 5' 5' 69.3 (d) 5.35 (d, 1.3) 6' 7' 33.3 (t) 2.45-2.37 (m) 177.6 (s) 8a' 100.4 (s) 9' 188.1 (s) ^b 106.2 (s) ^c 10a' 80.2 (s) 11' 17.3 (q) 0.99 (d, 6.3) 12.8) 5'-OC(O)CH3 20.9 (q) 2.07 (s) 12' 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) 5'-OC(O)CH3 20.9 (q) 2.07 (s) 12'-OC(O)CH3 169.8 (s) 11.38 (s) 12'-OC(O)CH3 12'-OC(O)CH3 120.2 (q) 1.79 (s) 11.38 (s) 12'-OC(O)CH3 20.2 (q) 1.79 (s) 11.38 (s) 11.38 (s)	12-O <i>C</i> (O)CH ₃	170.0 (s)		170.3 (s)		
$1-OH$ 11.52 (s) 11.61 (s) $8-OH$ 14.09 (s) 14.08 (s) $1'$ 161.6 (s) 14.08 (s) $2'$ 109.9 (d) 6.57 (d, 8.5) $3'$ 139.4 (d) 7.32 (d, 8.5) $4'$ 117.1 (s) $4a'$ $55'$ $6'$ 27.6 (d) 2.28 (m) $7'$ 33.3 (t) $2.45-2.37$ (m) $7'$ 33.3 (t) $2.45-2.37$ (m) $8'$ 100.4 (s) $9'$ $9'$ 88.1 (s) ^b 162.2 (s) ^c $10a'$ 80.2 (s) $11'$ 17.3 (q) 0.99 (d, 6.3) $12'$ $10'$ 17.3 (q) 0.99 (d, 6.3) $12'$ 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) $5' - OC(O) CH_3$ 169.7 (s) 2.07 (s) $12' - OC(O) CH_3$ 169.8 (s) 11.38 (s) $12' - OC(O) CH_3$ 109.8 (s) 11.38 (s) $1' - OH$ 11.38 (s) 11.38 (s)	12-OC(O) <i>CH</i> ₃	20.4 (q)	1.89 (s)	20.7 (q) ^d	$2.11 (s)^{e}$	
8-OH 14.09 (s) 14.08 (s) 1' 161.6 (s) 2' 109.9 (d) 6.57 (d, 8.5) 3' 139.4 (d) 7.32 (d, 8.5) 4' 117.1 (s) 4a' 547 (s) 5' 69.3 (d) 5.35 (d, 1.3) 6' 27.6 (d) 2.28 (m) 7' 33.3 (t) 2.45-2.37 (m) 8' 177.6 (s) 884' 8a' 100.4 (s) 9' 9' 188.1 (s) ^b 106.2 (s) ^c 10a' 17.3 (q) 0.99 (d, 6.3) 12' 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) 5' OC(0)CH ₃ 169.7 (s) 20.9 (q) 5' OC(0)CH ₃ 169.8 (s) 11.38 (s) 12' OC(0)CH ₃ 169.8 (s) 11.38 (s) 12' OC(0)CH ₃ 20.2 (q) 1.79 (s) 12' OC(0)CH ₃ 10.9 (s) 14.01 (s)	1-0 <i>H</i>		11.52 (s)		11.61 (s)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8-0 <i>H</i>		14.09 (s)		14.08 (s)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1′			161.6 (s)		
3'139.4 (d)7.32 (d, 8.5)4'117.1 (s)4a'154.7 (s)5'69.3 (d)5.35 (d, 1.3)6'27.6 (d)2.28 (m)7'33.3 (t)2.45-2.37 (m)8'100.4 (s)9'188.1 (s) ^b 9a'106.2 (s) ^c 10a'80.2 (s)11'17.3 (q)0.99 (d, 6.3)12'64.1 (t)5'-OC(O)CH3169.7 (s)5'-OC(O)CH3169.8 (s)12'-OC(O)CH3169.8 (s)12'-OC(O)CH3169.8 (s)12'-OC(O)CH3169.8 (s)12'-OC(O)CH3169.8 (s)12'-OC(O)CH3169.8 (s)12'-OC(O)CH3169.8 (s)12'-OC(O)CH311.38 (s)14-OI (s)11.38 (s)14-OI (s)14.01 (s)	2'			109.9 (d)	6.57 (d. 8.5)	
$4'$ 117.1 (s) $4a'$ 154.7 (s) $5'$ 69.3 (d) 5.35 (d, 1.3) $6'$ 27.6 (d) 2.28 (m) $7'$ 33.3 (t) 2.45–2.37 (m) $8'$ 100.4 (s) 9' $9'$ 188.1 (s) ^b $9a'$ 106.2 (s) ^c $10a'$ 80.2 (s) $11'$ 17.3 (q) 0.99 (d, 6.3) $12'$ 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) $5' \cdot OC(0)CH_3$ 169.7 (s) $5' \cdot OC(0)CH_3$ 20.9 (q) 2.07 (s) $12' \cdot OC(0)CH_3$ 169.8 (s) $12' \cdot OC(0)CH_3$ 169.8 (s) 1.79 (s) $12' \cdot OC(0)CH_3$ 10.98 (s) 1.138 (s) $12' - OC(0)CH_3$ 10.138 (s) 14.01 (s)	3'			139.4 (d)	7.32 (d. 8.5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4'			117.1 (s)		
$5'$ 69.3 (d) 5.35 (d, 1.3) $6'$ 27.6 (d) 2.28 (m) $7'$ 33.3 (t) $2.45-2.37$ (m) $8'$ 177.6 (s) $8a'$ 100.4 (s) $9'$ 188.1 (s) ^b $9a'$ 106.2 (s) ^c $10a'$ 80.2 (s) $11'$ 17.3 (q) 0.99 (d, 6.3) $12'$ 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) $5'-OC(O)CH_3$ 169.7 (s) $5'-OC(O)CH_3$ 169.7 (s) $5'-OC(O)CH_3$ 169.8 (s) $12'-OC(O)CH_3$ 17.9 (s) $12'-OC(O)CH_3$ 11.38 (s)	4a′			154.7 (s)		
$6'$ 27.6 (d) 2.28 (m) $7'$ 33.3 (t) $2.45-2.37$ (m) $8'$ 177.6 (s) $8a'$ 100.4 (s) $9'$ 188.1 (s) ^b $9a'$ 106.2 (s) $10a'$ 80.2 (s) $11'$ 17.3 (q) $12'$ 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) $5'-OC(O)CH_3$ 169.7 (s) $5'-OC(O)CH_3$ 169.7 (s) $5'-OC(O)CH_3$ 169.8 (s) $12' - OC(O)CH_3$ 169.8 (s) $12'-OC(O)CH_3$ 106.8 (s) $12'-OC(O)CH_3$ 109.8 (s) $12'-OC(O)CH_3$ 11.38 (s) $1'-OH$ 11.38 (s) $4-OH$ 14.01 (s)	5'			69.3 (d)	5.35 (d, 1.3)	
$7'$ 33.3 (t) $2.45-2.37$ (m) $8'$ 177.6 (s) $8a'$ 100.4 (s) $9'$ 188.1 (s) ^b $9a'$ 106.2 (s) ^c $10a'$ 80.2 (s) $11'$ 17.3 (q) 0.99 (d, 6.3) $12'$ 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) $5' \cdot OC(O)CH_3$ 169.7 (s) $5' \cdot OC(O)CH_3$ 20.9 (q) $12' \cdot OC(O)CH_3$ 169.8 (s) $12' \cdot OC(O)CH_3$ 169.8 (s) $12' \cdot OC(O)CH_3$ 11.38 (s) $12' \cdot OC(O)CH_3$ 11.38 (s) $12' \cdot OC(O)CH_3$ 11.38 (s) $12' - OC(O)CH_3$ 14.01 (s)	6′			27.6 (d)	2.28 (m)	
8' 177.6 (s) 8a' 100.4 (s) 9' 188.1 (s) ^b 9a' 106.2 (s) ^c 10a' 80.2 (s) 11' 17.3 (q) 0.99 (d, 6.3) 12' 64.1 (t) 4.54 (d, 12.7), 3.86 (d, 12.8) 5'-OC(O)CH ₃ 169.7 (s) 5'-OC(O)CH ₃ 169.8 (s) 12'-OC(O)CH ₃ 169.8 (s) 12'-OC(O)CH ₃ 169.8 (s) 12'-OC(O)CH ₃ 106.8 (s) 12'-OC(O)CH ₃ 11.38 (s) 14.01 (s) 14.01 (s)	7′			33.3 (t)	2.45-2.37 (m)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8′			177.6 (s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8a'			100.4 (s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9′			188.1 (s) ^b		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9a′			$106.2 (s)^{c}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10a′			80.2 (s)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11'			17.3 (q)	0.99 (d, 6.3)	
$\begin{array}{cccc} 5' - OC(0) CH_3 & 169.7 (s) \\ 5' - OC(0) CH_3 & 20.9 (q) & 2.07 (s) \\ 12' - OC(0) CH_3 & 169.8 (s) \\ 12' - OC(0) CH_3 & 20.2 (q) & 1.79 (s) \\ 1' - OH & 11.38 (s) \\ 8' - OH & 14.01 (s) \end{array}$	12'			64.1 (t)	4.54 (d, 12.7), 3.86 (d, 12.8)	
$\begin{array}{cccc} 5' \cdot OC(0) CH_3 & 20.9 (q) & 2.07 (s) \\ 12' \cdot OC(0) CH_3 & 169.8 (s) & \\ 12' \cdot OC(0) CH_3 & 20.2 (q) & 1.79 (s) \\ 1' \cdot OH & & 11.38 (s) \\ 8' \cdot OH & & 14.01 (s) \end{array}$	5'-OC(O)CH3			169.7 (s)		
$\begin{array}{cccc} 12' \cdot O C(0) CH_3 & 169.8 \text{ (s)} \\ 12' \cdot O C(0) CH_3 & 20.2 \text{ (q)} & 1.79 \text{ (s)} \\ 1' \cdot O H & 11.38 \text{ (s)} \\ 8' \cdot O H & 14.01 \text{ (s)} \end{array}$	5'-OC(O)CH ₃			20.9 (q)	2.07 (s)	
$\begin{array}{ccc} 12'-OC(O) CH_3 & 20.2 (q) & 1.79 (s) \\ 1'-OH & 11.38 (s) \\ 8'-OH & 14.01 (s) \end{array}$	12'-OC(O)CH ₃			169.8 (s)	• •	
1'-OH 8'-OH 14.01 (s)	12'-OC(O) CH ₃			20.2 (q)	1.79 (s)	
8'-OH 14.01 (s)	1'-0 <i>H</i>			· •	11.38 (s)	
	8'-0 <i>H</i>				14.01 (s)	

^{*a*} δ values are expressed in ppm. ^{*b-e*} Assignments may be exchangeable.

	antimalarial activity $(IC_{50}, \mu g/mL)^a$	antitubercular activity (MIC, μ g/mL) ^b	cytotoxicity (IC ₅₀ , μ g/mL) ^c		
compound	P. falciparum K1	M. tuberculosis H37Ra	KB cells	BC-1 cells	Vero cells
phomoxanthone A (1)	0.11	0.50	0.99	0.51	1.4
phomoxanthone B (2)	0.33	6.25	4.1	0.70	1.8
deacetylphomoxanthone A (3)	>20	>200	>20	>20	>50

^{*a*} The IC₅₀ values of the standard antimalarial compounds, chloroquine diphosphate and artemisinin, are 0.16 and 0.0011 μ g/mL, respectively. ^{*b*} The MIC values of the antituberculosis drugs, isoniazide and kanamycin sulfate, are 0.050 and 2.5 μ g/mL, respectively. ^{*c*} The IC₅₀ values of the standard compound, ellipticine, are 0.46 μ g/mL for KB cells and 0.60 μ g/mL for BC-1 cells.

HR C₁₈, 6 μ M, 40 \times 100 mm) with MeCN/H₂O = 65:35 as an eluent at a flow rate of 20 mL/min to obtain **1** ($t_{\rm R}$ 16 min) and **2** (3.7 mg, $t_{\rm R}$ 21 min).

Phomoxanthone A (1): yellow powder; mp 214–216 °C; [α]²⁵_D +99° (*c* 0.40, CHCl₃); UV λ_{max} (log ϵ) 212 (4.48), 258 (4.26), 336 (4.54) nm; IR (KBr) ν_{max} 1744, 1615, 1586, 1470, 1366, 1223, 1044, 897, 830 cm⁻¹; MS (ESI-TOF) *m*/*z* 773 [M + Na]⁺ (22), 751 [M + H]⁺ (100), 691 (13), 416 (10), 376 (9); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ 751.2241 (calcd for C₃₈H₃₉O₁₆, 751.2238).

Phomoxanthone B (2): yellow amorphous solid; mp 119– 122 °C; [α]²⁶_D –120° (*c* 0.15, CHCl₃); UV λ_{max} (log ϵ) 210 (sh) (4.42), 240 (4.19), 335 (4.49) nm; IR (KBr) ν_{max} 1748, 1611, 1439, 1368, 1220, 1045, 733 cm⁻¹; MS (ESI-TOF) *m/z* 773 [M + Na]⁺ (34), 751 [M + H]⁺ (100), 662 (9), 416 (65); HRMS (ESI-TOF) m/z [M + H]⁺ 751.2232 (calcd for C₃₈H₃₉O₁₆, 751.2238).

Deacetylation of 1. To a suspension of **1** (9.0 mg) in dry MeOH (2 mL) was added concentrated H₂SO₄ (0.2 mL), and the mixture was stirred for 45 h. The resulting homogeneous solution was partially concentrated under reduced pressure, and the residue was diluted with EtOAc (30 mL). The EtOAc solution was washed with H₂O (3 × 10 mL) and concentrated in vacuo to yield a yellow powder (7.9 mg). Purification by preparative HPLC (MeCN/H₂O = 40:60; 20 mL/min; *t*_R 14 min) gave compound **3** (5.2 mg, 74% yield).

Deacetylphomoxanthone A (3): yellow powder; mp 208–210 °C; $[\alpha]^{25}_{D}$ +14° (*c* 0.087, CHCl₃); UV (MeOH) λ_{max} (log ϵ) 218 (4.46), 250 (4.27), 340 (4.50) nm; IR (KBr) ν_{max} 3503, 1610,

1586, 1559, 1471, 1226, 1046 cm⁻¹; MS (ESI-TOF) *m*/*z* 605 [M + Na]⁺ (18), 583 [M + H]⁺ (73), 565 (8), 352 (44), 343 (55), 208 (100); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ 583.1823 (calcd for $C_{30}H_{31}O_{12}$, 583.1815); ¹H NMR (400 MHz, CDCl₃) differed in respect to **1** only in the following signals, δ 4.07 (2H, s, H-5), 3.85 (2H, d, *J* = 13.1 Hz, H-12a), 3.42 (2H, d, *J* = 13.1 Hz, H-12b), 2.48 (2H, dd, *J* = 19.2, 11.4 Hz, H-7a), 2.42 (2H, brs, -OH), 2.35 (2H, dd, *J* = 19.2, 6.1 Hz, H-7b), 2.14 (2H, m, H-6).

Biological Assay. Assay for activity against *P. falciparum* (K1, multi-drug-resistant strain) was performed using the protocol previously reported,²¹ which follows the microculture radioisotope technique described by Desjardins.²² IC₅₀ represents the concentration that causes 50% reduction of parasite growth as indicated by the in vitro uptake of [³H]-hypoxanthine by *P. falciparum*. Growth inhibitory activity against *Mycobacterium tuberculosis* H37Ra was performed using the Microplate Alamar Blue Assay (MABA).²³ Cytotoxicity of the purified compounds against human epidermoid carcinoma (KB), human breast cancer cells (BC-1), and African monkey kidney fibroblast (Vero) cells was evaluated using the colorimetric method.²⁴

Acknowledgment. Financial support from the Biodiversity Research and Training Program (BRT) and Thailand-Tropical Diseases Research Programme (T-2) is gratefully acknowledged. One of us (Y.T.) thanks National Science and Technology Development Agency (NSTDA) for the Senior Research Fellowship Award.

References and Notes

- Horn, W. S.; Simmonds, M. S. J.; Schwartz, R. E.; Blaney, W. M. Tetrahedron 1995, 51, 3969–78.
- (2) Izawa, Y.; Hirose, T.; Shimizu, T.; Koyama, K.; Natori, S. *Tetrahedron* **1989**, *45*, 2323–35.
- (3) Culvenor, C. C. J.; Edgar, J. A.; Marasas, W. F. O.; Mackay, M. F.; Gorst-Allman, C. P.; Steyn, P. S.; Vleggaar, R.; Wessels, P. L. *Tetrahedron* **1989**, *45*, 2351–72.

- (4) Tsantrizos, Y. S.; Ogilvie, K. K.; Watson, A. K. Can. J. Chem. 1992, 70, 2276–84.
- (5) Beglev, M. J.; Grove, J. F. J. Chem. Soc., Perkin Trans. 1 1985, 861– 3.
- (6) Grove, J. F. J. Chem. Soc., Perkin Trans. 1 1985, 865-9.
- (7) Cole, R. J.; Cox, R. H. Handbook of Toxic Fungal Metabolites, Academic Press: New York, 1981; Chapter 13, pp 646–69.
- (8) Franck, B.; Flasch, H. Forschr. Chem. Org. Chem. 1973, 30, 151– 206.
- (9) Franck, B.; Gottschalk, E. M.; Ohnsorge, U.; Hüper, F. Chem. Ber. 1966, 99, 3842–62.
- (10) Yamazaki, M.; Maebayashi, Y.; Miyaki, K. Chem. Pharm. Bull. 1971, 19, 199–201.
- (11) Andersen, R.; Büchi, G.; Kobbe, B.; Demain, A. L. J. Org. Chem. 1977, 42, 352–3.
- (12) Kurobane, I.; Vining, L. C. McInnes, A. G. J. Antibiot. 1979, 32, 1256– 66.
- (13) Steyn, P. S. Tetrahedron 1970, 26, 51-7.
- (14) Hopper, J. W.; Marlow, W.; Whalley, W. B.; Borthwick, A. D. Chem. Commun. 1971, 111–2.
- (15) Hooper, J. W.; Marlow, W.; Whalley, W. B.; Borthwick, A. D.; Bowden, R. J. Chem. Soc. (C) **1971**, 3580–90.
- (16) Kurobane, I.; Vining, L. C.; McInnes, A. G. Tetrahedron Lett. 1978, 4633-6.
- (17) Kurobane, I.; Iwahashi, S.; Fukuda, A. Drugs Exp. Clin. Res. 1987, 13, 339–44.
- (18) Harada, M.; Yano, S.; Watanabe, H.; Yamazaki, M.; Miyaki, K. Chem. Pharm. Bull. 1974, 22, 1600-6.
- (19) Wang, B. H.; Polya G. M. Planta Med. 1996, 62, 111-4.
- (20) Reddy, C. S.; Hayes, A. W.; Williams, W. L.; Ciegler, A. J. Toxicol. Environ. Health 1979, 5, 1159-69.
- (21) Isaka, M.; Punya, J.; Lertwerawat, Y.; Tanticharoen, M.; Thebtaranonth, Y. J. Nat. Prod. **1999**, 62, 329-31.
- (22) Desjardins, R. E.; Canfield, C. J.; Chulay, J. D. Antimicrob. Agents Chemother. 1979, 16, 710–8.
- (23) Collins, L.; Franzblau, S. G. Antimicrob. Agents Chemother. 1997, 41, 1004–9.
- (24) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. *J. Natl. Cancer Inst.* **1990**, *82*, 1107–12.

NP010006H